Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel.

نویسندگان

  • Nicolas Blondeau
  • Olivier Pétrault
  • Stella Manta
  • Valérie Giordanengo
  • Pierre Gounon
  • Régis Bordet
  • Michel Lazdunski
  • Catherine Heurteaux
چکیده

Vessel occlusion is the most frequent cause for impairment of local blood flow within the brain resulting in neuronal damage and is a leading cause of disability and death worldwide. Polyunsaturated fatty acids and especially alpha-linolenic acid improve brain resistance against cerebral ischemia. The purpose of the present study was to evaluate the effects of polyunsaturated fatty acids and particularly alpha-linolenic acid on the cerebral blood flow and on the tone of vessels that regulate brain perfusion. alpha-Linolenic acid injections increased cerebral blood flow and induced vasodilation of the basilar artery but not of the carotid artery. The saturated fatty acid palmitic acid did not produce vasodilation. This suggested that the target of the polyunsaturated fatty acids effect was the TREK-1 potassium channel. We demonstrate the presence of this channel in basilar but not in carotid arteries. We show that vasodilations induced by the polyunsaturated fatty acid in the basilar artery as well as the laser-Doppler flow increase are abolished in TREK-1(-/-) mice. Altogether these data indicate that TREK-1 activation elicits a robust dilation that probably accounts for the increase of cerebral blood flow induced by polyunsaturated fatty acids such as alpha-linolenic acid or docosahexanoic acid. They suggest that the selective expression and activation of TREK-1 in brain collaterals could play a significant role in the protective mechanisms of polyunsaturated fatty acids against stroke by providing residual circulation during ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Human TREK-1/HEK Cell Line: A Highly Efficient Screening Tool for Drug Development in Neurological Diseases

TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel...

متن کامل

An intracellular proton sensor commands lipid- and mechano-gating of the K(+) channel TREK-1.

The 2P domain K(+) channel TREK-1 is widely expres sed in the nervous system. It is opened by a variety of physical and chemical stimuli including membrane stretch, intracellular acidosis and polyunsaturated fatty acids. This activation can be reversed by PKA-mediated phosphorylation. The C-terminal domain of TREK-1 is critical for its polymodal function. We demonstrate that the conversion of a...

متن کامل

Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking.

Twik-related K+ (TREK) channels produce background currents that regulate cell excitability. In vivo, TREK-1 is involved in neuronal processes including neuroprotection against ischemia, general anesthesia, pain perception, and mood. Recently, we demonstrated that A-kinase anchoring protein AKAP150 binds to a major regulatory domain of TREK-1, promoting drastic changes in channel regulation by ...

متن کامل

Ischemia Increases TREK-2 Channel Expression in Astrocytes: Relevance to Glutamate Clearance.

The extent of an ischemic insult is less in brain regions enriched in astrocytes suggesting that astrocytes maintain function and buffer glutamate during ischemia. Astrocytes express a wide variety of potassium channels to support their functions including TREK-2 channels which are regulated by polyunsaturated fatty acids, intracellular acidosis and swelling; conditions that pertain to ischemia...

متن کامل

Retraction of: TWIK-related two-pore domain potassium channel TREK-1 in carotid endothelium of normotensive and hypertensive mice.

AIMS Potassium channels are essential elements of endothelial function. Recently, evidence emerged that the TWIK (tandem of P domains in a weak inwardly rectifying K+ channel)-related K+ channel (TREK-1) of the two-pore domain potassium channel gene family (K2P) may be involved in the regulation of vascular tone. However, the functional and molecular characterization of vascular TREK-1 is incom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 101 2  شماره 

صفحات  -

تاریخ انتشار 2007